HANKEL TYPE CONVOLUTION EQUATIONS IN DISTRIBUTION SPACE

B.B.Waphare*

Abstract

: In this paper we study Hankel type convolution equations in distribution spaces. Solvability conditions for Hankel type convolution equations are obtained. We have also investigated hypoelliptic Hankel-type convolution equations.

Key Words: Hankel type convolution equations, distributions, Bessel type functions.

2000 Mathematics subject classifications: 46 F 12.

[^0]1. Introduction: The Hankel type transformation is usually defined by

$$
h_{\alpha, \beta}(\phi)(x)=\int_{0}^{\infty}(x t)^{\alpha+\beta} J_{\alpha-\beta}(x t) \phi(t) d t, \quad x \in I=(0, \infty) \text {, }
$$

where $J_{\alpha-\beta}$ denotes the Bessel type function of the first kind and order $(\alpha-\beta)$. Throughout this paper $(\alpha-\beta)$ always will be greater than $-\frac{1}{2}$, and will denote by I the real interval $(0, \infty)$.

Following [25,26, and 27], we introduce the space $\mathcal{H}_{\alpha, \beta}$ as the space of all those complex valued and smooth functions ϕ defined on I such that, for any $m, k \in \mathbb{N}$,

$$
\rho_{m, k}^{\alpha, \beta}(\phi)=\operatorname{Sup}_{x \in(0, \infty)}\left|x^{m}\left(\frac{1}{x} D\right)^{k}\left[x^{2 \beta-1} \phi(x)\right]\right|<\infty
$$

The space $\mathcal{H}_{\alpha, \beta}$ is Frechet when it is endowed with the topology generated by the family $\left\{\rho_{m, k}^{\alpha, \beta}\right\}_{m, k \in \mathbb{N}}$ of seminorms. Following [25, Lemma 8], it can be easily established that $h_{\alpha, \beta}$ is an automorphism of $\mathcal{H}_{\alpha, \beta}$. The Hankel type transformation is defined on $\mathcal{H}_{\alpha, \beta}^{\prime}$, the dual space of $\mathcal{H}_{\alpha, \beta}$, as the adjoint of the $h_{\alpha, \beta}-$ transformation of $\mathcal{H}_{\alpha, \beta}$, and it is denoted by $h_{\alpha, \beta}^{\prime}$. More recently Waphare and Gunjal [24] have studied $h_{\alpha, \beta}$ on new spaces of functions and distributions. Now we define the spaces $\chi_{\alpha, \beta}$ and $Q_{\alpha, \beta}$ as follows:

A complex valued and smooth function ϕ defined on I is in $\chi_{\alpha, \beta}$ if and only if, for every $m, k \in \mathbb{N}$,

$$
\eta_{m, k}(\phi)=\lim _{n \rightarrow \infty}\left|e^{m x}\left(\frac{1}{x} D\right)^{k}\left(x^{2 \beta-1} \phi(x)\right)\right|<\infty
$$

$\chi_{\alpha, \beta}$ is equipped with the topology associated to the system $\left\{\eta_{m, k}^{\alpha, \beta}\right\}_{m, k \in \mathbb{N}}$ of seminorms. Thus $\chi_{\alpha, \beta}$ is a Frechet space.

The space $Q_{\alpha, \beta}$ is constituted by all those complex valued functions Φ satisfying the following two conditions:
(i) $s^{2 \beta-1} \Phi(s)$ is an even entire function, and
(ii) for every $m, k \in \mathbb{N}$

$$
\lambda_{m, k}^{\alpha, \beta}(\Phi)=\operatorname{Sup}_{|I m s| \leq k}\left(1+|s|^{2}\right)^{m}\left|s^{2 \beta-1} \Phi(s)\right|<\infty .
$$

$Q_{\alpha, \beta}$ is a Frechet space when we consider the topology generated by the family of seminorms $\left\{\lambda_{m, k}^{\alpha, \beta}\right\}_{m, k \in \mathbb{N}}$ on $Q_{\alpha, \beta}$.
In [24] it is established that $h_{\alpha, \beta}$ is a homeomorphism from $\chi_{\alpha, \beta}$ onto $Q_{\alpha, \beta}$. Moreover, $h_{\alpha, \beta}$ coincides with its inverse. The Hankel type transform is defined on the dual spaces $\chi_{\alpha, \beta}^{\prime}$ and $Q_{\alpha, \beta}^{\prime}$ as the adjoint of the $h_{\alpha, \beta}$ transformation and it is also denoted by $h_{\alpha, \beta}^{\prime}$.

The convolution for a Hankel type transformation closely connected with $h_{\alpha, \beta}$ was investigated by Hirschman [9] and Haimo [8] and Cholewinski [5]. A simple manipulation in the convolution considered by the above authors allows us to obtain the convolution for $h_{\alpha, \beta}$ that will denoted by \# and is defined as follows: For every measurable function ϕ and ψ on I such that $x^{2 \alpha} \phi$ and $x^{2 \alpha} \psi$ are absolutely integrable on I, the convolution $\phi \# \psi$ of ϕ and ψ is given by

$$
(\phi \# \psi)(x)=\int_{0}^{\infty} \phi(y)\left(\tau_{x} \psi\right)(y) d y, \quad x \in I
$$

where

$$
\begin{gathered}
\left(\tau_{x} \psi\right)(y)=\int_{0}^{\infty} D_{\alpha, \beta}(x, y, z) \psi(z) d z, x, y \in I \text { and } \\
D_{\alpha, \beta}(x, y, z)=\int_{0}^{\infty} t^{2 \beta-1}(x t)^{\alpha+\beta} J_{\alpha-\beta}(x t)(y t)^{\alpha+\beta} J_{\alpha-\beta}(y t)(z t)^{\alpha+\beta} J_{\alpha-\beta}(z t) d t
\end{gathered}
$$

$$
x, y, z \in I .
$$

The study of the \# - convolution in distribution spaces was started by de Sousa-Pinto [19]. In a series of papers, Betancor and Marrero [2,3,4,22,23] and [12] have investigated the Hankel convolution on the Zemanian spaces. Also Betencor and Gonzalez [1] studied the generalized Hankel convolution. Recently, Waphare and Gunjal [24] defined the \# convolution on distributions of exponential growth.

In this paper we analyze Hankel type convolution equations. Solvability conditions for the \# convolution equations in $\mathcal{H}_{\alpha, \beta}^{\prime}$ and $\chi_{\alpha, \beta}^{\prime}$ are investigated in Section 2. Also in Section 3 we study hypoelliptic Hankel type convolution equations in $\mathcal{H}_{\alpha, \beta}^{\prime}$ and $\chi_{\alpha, \beta}^{\prime}$. Throughout this paper M will always denote a suitable positive constant not necessarily the same in each occurrence.

2. Solvability of Hankel type convolution equations of distribution:

In this section, inspired by the papers of Sznajder and Zietezny [17,18] and Pahk and Sohn [15], we obtain necessary and sufficient conditions to solve Hankel type convolution equations in $\mathcal{H}_{\alpha, \beta}^{\prime}$ and $\chi_{\alpha, \beta}^{\prime}$. Marrero and Betencor [12] studied the Hankel type convolution operators on $\mathcal{H}_{\alpha, \beta}^{\prime}$. They introduced, for every $m \in Z$, the space $O_{\alpha, \beta, m, \#}$ constituted by all those complex valued and smooth functions ϕ defined on I such that, for every $k \in \mathbb{N}$,

$$
\delta_{k}^{\alpha, \beta, m}(\phi)=\operatorname{Sup}_{x \in I}\left|\left(1+x^{2}\right)^{m} x^{2 \beta-1} \Delta_{\alpha, \beta}^{k} \phi(x)\right|<\infty,
$$

where $\Delta_{\alpha, \beta}$ denotes the Bessel type operator $x^{2 \beta-1} D x^{4 \alpha} D x^{2 \beta-1}$.
We define $\bar{O}_{\alpha, \beta, m, \#}$ as the closure of $\mathcal{H}_{\alpha, \beta}$ in $O_{\alpha, \beta, m, \#}$.
Note that $\bar{O}_{\alpha, \beta, m, \#} \supset \bar{O}_{\alpha, \beta, m+1, \#}$ for each $m \in Z$. The space
$\mathrm{U}_{m \in z} \bar{O}_{\alpha, \beta, m, \#}$ is denoted by $\bar{O}_{\alpha, \beta, \#}$. The Hankel type convolution operators of $\mathcal{H}_{\alpha, \beta}^{\prime}$ are the elements of $\bar{O}_{\alpha, \beta, \#}^{\prime}$, the dual space of $\bar{O}_{\alpha, \beta, \#}$ [3]. Characterizations of $\bar{O}_{\alpha, \beta, \#}^{\prime}$, were obtained in Proposition 4.2 [12]. Following [4], we can establish the following result:
Proposition 2.1: For $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$, the following conditions are equivalent
(i) To every $k \in \mathbb{N}$ there correspond $m, n \in \mathbb{N}$ and a positive constant M such that

$$
\max _{o \leq \ell \leq m} \operatorname{Sup}\left\{\left|\left(\frac{1}{t} D\right)^{\ell}\left[t^{2 \beta-1}\left(h_{\alpha, \beta}^{\prime} S\right)(t)\right]\right|: t \in I, \quad|x-t| \leq\left(1+x^{2}\right)^{-k}\right\}
$$

$\geq\left(1+x^{2}\right)^{-n}$, whenever $x \in I, x>M$.
(ii) If $T \in \bar{O}_{\alpha, \beta, \#}^{\prime}$ and $S \# T \in \mathcal{H}_{\alpha, \beta}$, then $T \in \mathcal{H}_{\alpha, \beta}$.

If $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$, the existence of solution for the convolution equation

$$
\begin{equation*}
u \# S=v \tag{2.1}
\end{equation*}
$$

for every $v \in \mathcal{H}_{\alpha, \beta}^{\prime} ;$ implies conditions (i) and (ii) in Proposition 2.1.
Proposition 2.2: Let $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$. If $\mathcal{H}_{\alpha, \beta}^{\prime} \# S=\mathcal{H}_{\alpha, \beta}^{\prime}$, then conditions
(i) and (ii) in Proposition 2.1 hold.

Proof: It is enough to see that (ii) holds when $\mathcal{H}_{\alpha, \beta}^{\prime} \# S=\mathcal{H}_{\alpha, \beta}^{\prime}$.
Note that the mapping

$$
\begin{aligned}
F: & \mathcal{H}_{\alpha, \beta}^{\prime} \rightarrow \mathcal{H}_{\alpha, \beta}^{\prime}=\mathcal{H}_{\alpha, \beta}^{\prime} \# S \\
& u \rightarrow u \# S
\end{aligned}
$$

is the transpose of the mapping

$$
\begin{aligned}
G: \mathcal{H}_{\alpha, \beta} & \rightarrow \mathcal{H}_{\alpha, \beta} \subset S \# \mathcal{H}_{\alpha, \beta} \\
& \phi \rightarrow S \# \phi
\end{aligned}
$$

Then by involving [6, Corollary, p. 92] the mapping G is an isomorphism.
In particular, the mapping $G^{-1}: S \# \mathcal{H}_{\alpha, \beta} \rightarrow \mathcal{H}_{\alpha, \beta}$ is continuous.
Assume now that $T \in \bar{O}_{\alpha, \beta, \#}^{\prime}$ is such that $T \# S \in \mathcal{H}_{\alpha, \beta}$. Let $\left(\phi_{k}\right)_{k=1}^{\infty}$ be a sequence of smooth functions such that the following three conditions are satisfied.
(i) $c_{\alpha, \beta}^{-1} \int_{0}^{\infty} x^{2 \alpha} \phi_{k}(x) d x=1$, where $c_{\alpha, \beta}=2^{\alpha-\beta} \Gamma(3 \alpha+\beta)$,
(ii) $0 \leq \phi_{k}(x), x \in I$,
(iii) $\phi_{k}(x)=0, x \notin(1 /(k+1), 1 / k)$, for every $k \in \mathbb{N}$.

According to [3,p.1148], for each $\phi \in \mathcal{H}_{\alpha, \beta}$,

$$
\begin{equation*}
\phi_{k} \# \psi \rightarrow \psi, \text { as } k \rightarrow \infty, \text { in } \mathcal{H}_{\alpha, \beta} \tag{2.2}
\end{equation*}
$$

Moreover, by involving [12, Proposition 4.7], we can write

$$
S \#\left(T \# \phi_{k}\right)=(S \# T) \# \phi_{k}=(T \# S) \# \phi_{k}, \text { for every } k \in \mathbb{N}
$$

Since $T \# \phi_{k} \in \mathcal{H}_{\alpha, \beta}, k \in \mathbb{N}$, by taking into account that G^{-1} is continuous and by (2.2) and (2.3), we conclude that $\left(T \# \phi_{k}\right)_{k=1}^{\infty}$ converges in $\mathcal{H}_{\alpha, \beta}$. Also by (2.2) again $T \# \phi_{k} \rightarrow T$, as $k \rightarrow \infty$, in $\mathcal{H}_{\alpha, \beta}^{\prime}$. When we consider in $\mathcal{H}_{\alpha, \beta}^{\prime}$ the weak* (or the strong) topology. Hence $T \in$ $\mathcal{H}_{\alpha, \beta}$. Thus proof is completed.

Waphare and Gunjal [24] have defined the Hankel type convolution of distributions of exponential growth. We introduced [24] a subspace $\chi_{\alpha, \beta, \#}^{\prime}$ of $\chi_{\alpha, \beta}^{\prime}$ consisting of $S \in \chi_{\alpha, \beta}^{\prime}$ such that $S \# \psi \in \chi_{\alpha, \beta}$ for every $\psi \in \chi_{\alpha, \beta}$.

In the following we establish a condition that $S \in \chi_{\alpha, \beta, \#}^{\prime}$ satisfies when the equation (2.1) admits a solution for every $v \in \chi_{\alpha, \beta}^{\prime}$.

Proposition 2.3: Let $S \in \chi_{\alpha, \beta, \#}^{\prime}$. If $\chi_{\alpha, \beta}^{\prime} \# S=\chi_{\alpha, \beta}^{\prime}$, then S verifies the following property. $T \in \chi_{\alpha, \beta}$ provided that $T \in \chi_{\alpha, \beta, \#}^{\prime}$ and $T \# S \in \chi_{\alpha, \beta}$.

Proof: This result can be proved in a similar way to Proposition 2.2. It is enough to see that if $\left(\psi_{k}\right)_{k=1}^{\infty}$ is a sequence of smooth functions verifying the three conditions listed in the proof of Proposition 2.2 then, for every $\psi \in \chi_{\alpha, \beta}$,

$$
\begin{equation*}
\psi \# \phi_{k} \rightarrow \psi, \text { as } k \rightarrow \infty, \text { in } \chi_{\alpha, \beta}, \tag{2.4}
\end{equation*}
$$

By virtue of [24] and by the interchange formula [9, Theorem 2d] to show (2.4) it is equivalent to see that, for every $\Psi \in Q_{\alpha, \beta}$,

$$
\begin{equation*}
s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right) \Psi \rightarrow \Psi \text { as } k \rightarrow \infty, \text { in } Q_{\alpha, \beta} \tag{2.5}
\end{equation*}
$$

We now prove (2.5). Let $\left(\phi_{k}\right)_{k=1}^{\infty}$ be a sequence in the proof of Proposition 2.2 and Let $\Psi \in$ $Q_{\alpha, \beta}$. Since $\int_{0}^{\infty} t^{2 \alpha} \phi_{k}(t) d t=c_{\alpha, \beta}$, for every $k \in \mathbb{N}$, where $c_{\alpha, \beta}=2^{\alpha-\beta} \Gamma(3 \alpha+\beta)$, we can write

$$
\begin{aligned}
s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right)(s)-1= & \int_{0}^{\infty}(s t)^{-(\alpha-\beta)} J_{\alpha-\beta}(s t) t^{2 \alpha} \phi_{k}(t) d t-1 \\
& =\int_{1 /(k+1)}^{1 / k}\left[(s t)^{-(\alpha-\beta)} J_{\alpha-\beta}(s t)-\frac{1}{c_{\alpha, \beta}}\right] t^{2 \alpha} \phi_{k}(t) d t
\end{aligned}
$$

for every $k \in \mathbb{N}$ and $s \in \mathbb{C}$.
Let K be a compact subset of \mathbb{C}, and let $\epsilon>0$. There exists $t_{0}>0$ such that

$$
\left|(s t)^{-(\alpha-\beta)} J_{\alpha-\beta}(s t)-1 / c_{\alpha, \beta}\right|<\epsilon,
$$

for each $0<t<t_{0}$ and $s \in K$. Hence we can find $k_{0} \in \mathbb{N}$ such that every $k \geq k_{0}$ and $s \in K$,

$$
\begin{gathered}
\left|s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right)(s)-1\right| \leq \int_{1 /(k+1)}^{1 / k}\left|(s t)^{-(\alpha-\beta)} J_{\alpha-\beta}(s t)-1 / C_{\alpha, \beta}\right| t^{2 \alpha} \phi_{k}(t) d t \\
<\epsilon C_{\alpha, \beta}
\end{gathered}
$$

Moreover, from [11, Lemma 4], we deduce

$$
\begin{aligned}
\left|s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right)(s)-1\right| \leq & \int_{0}^{\infty}\left(\left|(s t)^{-(\alpha-\beta)} J_{\alpha-\beta}(s t)\right|+1\right) t^{2 \alpha} \phi_{k}(t) d t \\
\leq & M e^{|I m s|} \int_{0}^{\infty} t^{2 \alpha} \phi_{k}(t) d t \\
& =M e^{|I m s|}, \text { for every } k \in \mathbb{N} \text { and } s \in \mathbb{C}
\end{aligned}
$$

Hence, for each $m \in \mathbb{N}$ there exists a $a>0$ such that

$$
\frac{1}{1+|s|^{2}}\left|s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right)-1\right|<\epsilon, \text { for every } k \geq k_{0} \text { and }|\operatorname{Ims}| \leq m .
$$

Further let $m, n \in \mathbb{N}$. We have, for every $\Psi \in Q_{\alpha, \beta}$,

$$
w_{n, m}^{\alpha, \beta}\left(\Psi(s)\left[s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right)(s)-1\right]\right)
$$

$$
\leq \operatorname{Sup}_{|I m s| \leq m}\left(1+|s|^{2}\right)^{n+1}\left|s^{2 \beta-1} \Psi(s)\right| \operatorname{Sup}_{|I m s|} \frac{1}{1+|s|^{2}}\left|s^{2 \beta-1} h_{\alpha, \beta}\left(\phi_{k}\right)(s)-1\right| \rightarrow 0,
$$

as $k \rightarrow \infty$. Thus (2.5) is proved. Thus proof is completed.
We now give a condition for $S \in \chi_{\alpha, \beta, \#}^{\prime}$ that implies the solvability of equation (2.1) for every $v \in \chi_{\alpha, \beta}^{\prime}$.

Proposition 2.4: Let $S \in \chi_{\alpha, \beta, \#}^{\prime}$. If there exist N, τ, C positive constants such that

$$
\begin{equation*}
\operatorname{Sup}_{s \in \mathbb{C},|s| \leq r} \left\lvert\,(\xi+s)^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(\xi+s) \geq \frac{c}{\left(1+|\xi|^{2}\right)^{N}}\right., \xi \in \mathbb{R}, \tag{2.6}
\end{equation*}
$$

then $\chi_{\alpha, \beta}^{\prime} \# S=\chi_{\alpha, \beta}^{\prime}$.
Proof: By [6, Corollary, p. 92], we see that $\chi_{\alpha, \beta}^{\prime}=\chi_{\alpha, \beta}^{\prime} \# S$, it is sufficient to prove that the linear mapping

$$
\begin{aligned}
G: \chi_{\alpha, \beta} & \rightarrow S \# \chi_{\alpha, \beta} \subset \chi_{\alpha, \beta} \\
& \psi \rightarrow S \# \psi
\end{aligned}
$$

is a homeomorphism.
Note firstly that G is continuous mapping. In effect, by invoking [24], we obtain

$$
\begin{equation*}
G(\psi)=S \# \psi=h_{\alpha, \beta}\left(S^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S) h_{\alpha, \beta}(\psi)\right), \text { for every } \psi \in \chi_{\alpha, \beta} \tag{2.7}
\end{equation*}
$$

Since $s^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)$ is a continuous multiplier from $Q_{\alpha, \beta}$ into itself (see [24]) and from [24] it infers that G is continuous.

Moreover from (2.7), we can deduce that G is one-to-one. Infact, if $\psi \in \chi_{\alpha, \beta}$ being $G(\psi)=0$ then $s^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S) h_{\alpha, \beta}(\psi)=0$. Since
$S \neq 0, h_{\alpha, \beta}(\psi)=0$ and hence $\psi=0$. To complete the proof, we have to prove that the mapping

$$
\begin{gathered}
G^{-1}: S \# \chi_{\alpha, \beta} \rightarrow \chi_{\alpha, \beta} \\
S \# \psi \rightarrow \psi
\end{gathered}
$$

is continuous, or equivalently, by [24], we have to see that the mapping

$$
\begin{gathered}
F: s^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S) Q_{\alpha, \beta} \rightarrow Q_{\alpha, \beta} \\
s^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S) \Phi \rightarrow \Phi
\end{gathered}
$$

is continuous. Let $\Phi \in Q_{\alpha, \beta}$ and define $\Psi=s^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S) \Phi$. Let $k \in \mathbb{N}$. By invoking lemma of Hormander [10, Lemma 3.2], we obtain

$$
\begin{aligned}
\left|s^{2 \beta-1} \Phi(s)\right| & \leq \operatorname{Sup}_{|z-s|<4(k+r)}\left|z^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(z) z^{2 \beta-1} \Phi(z)\right| \\
& \times \frac{\operatorname{Sup}_{|z-s|<4(k+r)}\left|z^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(z)\right|}{\left[\operatorname{Sup}_{|z-s|<k+r}\left|z^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(z)\right|\right]^{2}}, s \in \mathbb{C} .
\end{aligned}
$$

Also, according to (2.6), one has

$$
\begin{align*}
\operatorname{Sup}_{|z-s|<k+r}\left|z^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(z)\right|= & \operatorname{Sup}_{|z|<k+r}\left|(s+z)^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(s+z)\right| \\
& \geq \operatorname{Sup}_{|z|<r} \mid(\text { Res }+z)^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(\text { Res }+z) \mid \\
\geq & \frac{C}{\left(1+\mid \text { Res }\left.\right|^{2}\right)^{N}} \tag{2.9}\\
& \geq \frac{C}{\left(1+|s|^{2}\right)^{N}}, \quad|I m s| \leq k .
\end{align*}
$$

Moreover by [24], there exists $n \in \mathbb{N}$ such that

$$
\operatorname{Sup}_{|I m z| \leq 5 k+4 r}\left(1+|z|^{2}\right)^{-n}\left|z^{2 \beta-1} h_{\alpha, \beta}^{\prime}(s)(z)\right|<\infty .
$$

Then

$$
\begin{gather*}
\operatorname{Sup}_{|z-s|<4(k+r)}\left|z^{2 \beta-1} h_{\alpha, \beta}^{\prime}(s)(z)\right|=\operatorname{Sup}_{|z|<4(k+r)}\left|(s+z)^{2 \beta-1} h_{\alpha, \beta}^{\prime}(s)(s+t z)\right| \\
\leq M \operatorname{Sup}_{|z-s|<4(k+r)}\left(1+|s+z|^{2}\right)^{n} \\
\leq M\left(1+|s|^{2}\right)^{n},|I m s| \leq k \tag{2.10}
\end{gather*}
$$

Hence from (2.8), (2.9) and (2.10), we conclude that

$$
\begin{align*}
& \left|s^{2 \beta-1} \Phi(s)\right| \leq M\left(1+|s|^{2}\right)^{n+2 N} \\
& \times \operatorname{Sup}_{|z|<4(k+r)}\left|(z+s)^{2 \beta-1} \Psi(z+s)\right|,|I m s| \leq k \tag{2.11}
\end{align*}
$$

Now let $m \in \mathbb{N}$. By (2.11) one has

$$
\begin{aligned}
& \operatorname{Sup}_{|I m s| \leq k}^{\operatorname{Sup}}\left(1+|s|^{2}\right)^{m}\left|s^{2 \beta-1} \Phi(s)\right| \\
& \leq M \underset{|I m s| \leq k}{\operatorname{Sup}}\left(1+|s|^{2}\right)^{n+2 N+m} \underset{|z|<4(k+r)}{\operatorname{Sup}}\left|(z+s)^{2 \beta-1} \Psi(z+s)\right| \\
& \leq M \underset{|I m s| \leq k}{\operatorname{Sup}} \underset{|z|<4(k+r)}{\operatorname{Sup}}\left(1+|z+s|^{2}\right)^{n+2 N+m}\left|(z+s)^{2 \beta-1} \Psi(z+s)\right| \\
& \leq M \underset{|I m s| \leq 5 k+4 r}{\operatorname{Sup}}\left(1+|s|^{2}\right)^{n+2 N+m}\left|s^{2 \beta-1} \Psi(s)\right| .
\end{aligned}
$$

Thus we prove that F is continuous, and we conclude that G is a homeomorphism. Thus proof is completed.

3. Hypoelliptic Hankel type convolution equations:

Sampson and Zielezny [16], Zielezny [28] and [29] and Pahk [13] and [14], amongst others, have investigated hypoelliptic (usual) convolution equations in certain spaces of generalized functions.

In this section we investigate hypoelliptic conditions for the Hankel type convolution equations in $\mathcal{H}_{\alpha, \beta}^{\prime}$ and $\chi_{\alpha, \beta}^{\prime}$.

Let $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$. We say that S (or the Hankel type convolution equation $u \# s=v$) is hypoelliptic in $\mathcal{H}_{\alpha, \beta}^{\prime}$ if all solutions $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ of $u \# S=v$ are in $\bar{O}_{\alpha, \beta, \#}$ whenever $v \in \bar{O}_{\alpha, \beta, \#}$.

Conversely $v \in \bar{O}_{\alpha, \beta, \#}$ provided that the equation $u \# S=v$ admits a solution $u \in \bar{O}_{\alpha, \beta, \#}$.
Proposition 3.1: If $f \in \bar{O}_{\alpha, \beta, \#}$ and $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$, then $f \# S \in \bar{O}_{\alpha, \beta, \#}$.
Proof: A simple modification in the proof of [12, Proposition 4.2] allows us to see that, for every $m \in \mathbb{N}$, there exist $k=k(m)$ and continuous functions f_{p} on $\mathrm{I}, 0 \leq p \leq k$, such that

$$
S=\sum_{p=0}^{k} \Delta_{\alpha, \beta}^{p} f_{p}, \text { and }
$$

$\left(1+x^{2}\right)^{m} x^{2 \beta-1} f_{p}$ is bounded on I, $0 \leq p \leq k$.
Claim 1: $l \in \mathbb{Z}$, and let $f \in \bar{O}_{\alpha, \beta, l, \#}$. If $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$, then

$$
f \# S=\sum_{p=0}^{k} \Delta_{\alpha, \beta}^{p}\left(f \# f_{p}\right)
$$

where $\left(f_{p}\right)_{p=0}^{k}$ is a family of continuous functions on $(0, \infty)$ such that

$$
\begin{equation*}
S=\sum_{p=0}^{k} \Delta_{\alpha, \beta}^{p} f_{p} \tag{3.1}
\end{equation*}
$$

and $\left(1+x^{2}\right)^{m} x^{2 \beta-1} f_{p}$ is bounded on I , for every $p=0,1, \ldots \ldots, k$, and being $m>|l|+3 \alpha+$ β.

Proof of claim 1: Let $\phi \in \mathcal{H}_{\alpha, \beta}$. By (3.1) we can write
$\langle f \# S, \quad \psi\rangle=\left\langle f ; S \# \psi=\int_{0}^{\infty} f(x) \sum_{p=0}^{k} \int_{0}^{\infty} f_{p}(y)\left(\tau_{x} \Delta_{\alpha, \beta}^{p} \psi\right)\right\rangle(y) d y d x$

$$
=\sum_{p=0}^{k} \int_{0}^{\infty}\left(\Delta_{\alpha, \beta}^{p} \psi\right)(x) \int_{0}^{\infty} f_{p}(y)\left(\tau_{x} f\right)(y) d y d x .
$$

Since $m>|l|+3 \alpha+\beta$, it follows for every $p=0,1, \ldots \ldots, k$,

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty}\left|f_{p}(y)\right||f(x)| \int_{0}^{\infty} D_{\alpha, \beta}(x, y, z)\left|\Delta_{\alpha, \beta, z}^{p} \psi(z)\right| d z d x d y \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left|f_{p}(y)\right|\left|\Delta_{\alpha, \beta, z}^{p} \psi(z)\right| \cdot \int_{|z-y|}^{z+y} D_{\alpha, \beta}(x, y, z) x^{2 \alpha} x^{2 \beta-1}|f(x)| d x d y d z \\
& \leq M \int_{0}^{\infty} \int_{0}^{\infty}\left|f_{p}(y)\right|\left|\Delta_{\alpha, \beta, z}^{p} \psi(z)\right|\left(1+(z+y)^{2}\right)^{|l|}(z y)^{2 \alpha} d z d y \\
& \leq M \int_{0}^{\infty} y^{2 \alpha}\left(1+y^{2}\right)^{|l|}\left|f_{p}(y)\right| d y \cdot \int_{0}^{\infty} z^{2 \alpha}\left(1+z^{2}\right)^{|l|}\left|\Delta_{\alpha, \beta, z}^{p} \psi(z)\right| d z<\infty,
\end{aligned}
$$

and the interchange in the order of integrations is justified.
Thus proof of claim 1 is completed.
Claim 2: Let $l \in z$. If g is a continuous function on I such that $\left(1+x^{2}\right)^{a} x^{2 \beta-1} g(x)$ is bounded on I , for some $a>|l|+3 \alpha+\beta$, and $f \in \bar{O}_{\alpha, \beta, l, \#}$ then $f \# g \in \bar{O}_{\alpha, \beta, \#}$.
Proof: Let $b \in \mathbb{N}$. Following [1, Lemma 3.1], we can see that the operators τ_{x} and $\Delta_{\alpha, \beta}$ commute on $\bar{o}_{\alpha, \beta, \#}$ for each $x \in I$, we can write

$$
\Delta_{\alpha, \beta}^{b}(f \# g)(x)=\int_{0}^{\infty} g(y) \tau_{x}\left(\Delta_{\alpha, \beta}^{b} f\right)(y) d y, x \in I .
$$

For every $x, y \in I$ one has
$\left|\tau_{x}\left(\Delta_{\alpha, \beta}^{b} f\right)(y)\right| \leq \int_{|x-y|}^{x+y} D_{\alpha, \beta}(x, y, z)\left|\left(\Delta_{\alpha, \beta}^{b} f\right)(z)\right| d z$
$\leq M\left(1+(x+y)^{2}\right)^{|l|}(x y)^{2 \alpha}$
$\leq M(x y)^{2 \alpha}\left(1+x^{2}\right)^{|l|}\left(1+y^{2}\right)^{|l|}$.
Hence we obtain that

$$
\begin{align*}
\left|\Delta_{\alpha, \beta}^{b}(f \# g)(x)\right| \leq & \int_{0}^{\infty}|g(y)|\left|\left(\tau_{x} \Delta_{\alpha, \beta}^{b} f\right)(y)\right| d y \\
\leq & M x^{2 \alpha}\left(1+x^{2}\right)^{|l|} \operatorname{Sup}_{z \in I}\left(1+z^{2}\right)^{l} z^{2 \beta-1}\left|\Delta_{\alpha, \beta}^{b} f(z)\right| \\
& \times \int_{0}^{\infty} y^{2 \alpha}\left(1+y^{2}\right)^{|l|}|g(y)| d y, x \in I . \tag{3.2}
\end{align*}
$$

Then $f \# g \in O_{\alpha}-|l|$, \#.

Moreover, $f \# g \in \bar{O}_{\alpha, \beta,-|l|, \#}$. In effect, if $\left(\psi_{n}\right)_{n=0}^{\infty} \subset \mathcal{H}_{\alpha, \beta}$ and $\psi_{n} \rightarrow f$, as $n \rightarrow \infty$ in $O_{\alpha, \beta, l, \#,}$, then from (3.2) we can infer that $\psi_{n} \# g \rightarrow f \# g$, as $n \rightarrow \infty$ in $O_{\alpha, \beta,-|l|, \#}$. Also according to [22], there exists an $s \in Z$ such that $\psi_{n} \# g \in \bar{O}_{\alpha, \beta, s, \#}$ for every $n \in \mathbb{N}$. Hence as $\bar{O}_{\alpha, \beta, \#}$ is complete [22], $f \# g \in \bar{O}_{\alpha, \beta, \#}$.

Now, by taking into account that, for every $\psi \in \mathcal{H}_{\alpha, \beta}$ and $f \in \bar{O}_{\alpha, \beta, \#}$,

$$
\int_{0}^{\infty} f(x) \Delta_{\alpha, \beta} \psi(x) d x=\int_{0}^{\infty} \Delta_{\alpha, \beta} f(x) \psi(x) d x
$$

Thus from Claim 1 and Claim 2 we conclude that $f \# S \in \bar{O}_{\alpha, \beta, \#}$.
Thus proof is completed.
We say that $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$ has the property $(H E)$ if and only if there exist $B, C>0$ such that $\left|h_{\alpha, \beta}^{\prime}(S)(y)\right| \geq y^{-B}$ for every $y \geq C$. We now prove that the property ($H E$) is a necessary and sufficient condition in order that $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$ is hypoelliptic in $\mathcal{H}_{\alpha, \beta}^{\prime}$.
The following result will allow us to prove the necessity of the condition $(H E)$.
Proposition 3.2: Assume that $\xi_{1}>1, \xi_{j}-\xi_{j-1}>1$ for every $j=2,3, \ldots$, and $\left(a_{j}\right)_{j=1}^{\infty} \subset \mathbb{C}$ such that $\left|a_{j}\right|=O\left(\xi_{j}^{\gamma}\right)$, as $j \rightarrow \infty$, for some $\gamma>0$.
Denote by $\delta_{\alpha-\beta}$ the element of $\mathcal{H}_{\alpha, \beta}^{\prime}$ defined by

$$
\left\langle\delta_{\alpha-\beta}, \psi\right\rangle=c_{\alpha, \beta} \lim _{x \rightarrow 0+} x^{2 \beta-1} \psi(x), \psi \in \mathcal{H}_{\alpha, \beta}
$$

being $c_{\alpha, \beta}=2^{\alpha-\beta} \Gamma(3 \alpha+\beta)$.
Then

$$
\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j}} \delta_{\alpha-\beta} \in \mathcal{H}_{\alpha, \beta}^{\prime}
$$

Moreover, if
$T=h_{\alpha, \beta}^{\prime}\left(\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j}} \delta_{\alpha-\beta}\right)$, then $T \in \bar{O}_{\alpha, \beta, \#}$ if and only if $\left|a_{j}\right|=O\left(\xi_{j}^{-v}\right)$ as $j \rightarrow \infty$, for each $v \in \mathbb{N}$.

Proof: The series

$$
\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j}} \delta_{\alpha-\beta}
$$

converges in $\mathcal{H}_{\alpha, \beta}^{\prime}$, when we consider in $\mathcal{H}_{\alpha, \beta}^{\prime}$ the weak* topology. In effect for every $\psi \in$ $\mathcal{H}_{\alpha, \beta}$ and $\xi \in I$ according to $[4,(2.1)]$, one has

$$
\begin{aligned}
\left\langle\tau_{\xi} \delta_{\alpha-\beta}, \psi\right\rangle= & c_{\alpha, \beta} \lim _{x \rightarrow 0+} x^{2 \beta-1}\left(\tau_{\xi} \phi\right)(x) \\
& =c_{\alpha, \beta} \lim _{x \rightarrow 0+} h_{\alpha, \beta}\left[(x t)^{-(\alpha-\beta)} J_{\alpha-\beta}(x t) h_{\alpha, \beta}(\psi)(t)\right](\xi) \\
= & \phi \psi(\xi) .
\end{aligned}
$$

Hence for each $n \in \mathbb{N}$,

$$
\left\langle\sum_{j=1}^{n} a_{j} \tau_{\xi_{j}} \delta_{\alpha-\beta}, \psi\right\rangle=\sum_{j=1}^{n} a_{j} \psi\left(\xi_{j}\right), \psi \in \mathcal{H}_{\alpha, \beta}
$$

and since $\left|a_{j}\right|=O\left(\xi_{j}^{\gamma}\right)$ as $j \rightarrow \infty$, for some $\gamma>0$, the last sequence converges as $n \rightarrow \infty$, for every $\psi \in \mathcal{H}_{\alpha, \beta}$. Therefore

$$
\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j}} \delta_{\alpha-\beta} \in \mathcal{H}_{\alpha, \beta}^{\prime}
$$

Moreover, from (3.3) we deduce that

$$
\begin{aligned}
\langle T, \psi\rangle & =\left\langle\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j}} \delta_{\alpha-\beta}, h_{\alpha, \beta} \psi\right\rangle \\
& =\sum_{j=1}^{\infty} a_{j} h_{\alpha, \beta}(\psi)\left(\xi_{j}\right) \\
& =\left\langle\sum_{j=1}^{\infty} a_{j}\left(x \xi_{j}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x \xi_{j}\right), \psi(x)\right\rangle, \quad \psi \in \mathcal{H}_{\alpha, \beta}
\end{aligned}
$$

Thus it is established that

$$
T=\sum_{j=1}^{\infty} a_{j}\left(x \xi_{j}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x \xi_{j}\right)
$$

It is not hard to see that, if $\left|a_{j}\right|=O\left(\left|\xi_{j}\right|^{-v}\right)$ as $j \rightarrow \infty$, for each $v \in \mathbb{N}$, then by involving well known properties of the Bessel function [27, Sections 5.1, (6) and (7)] for every $b \in \mathbb{N}$ the series

$$
\Delta_{\alpha, \beta}^{b} T(x)=\sum_{j=1}^{\infty} a_{j}\left(-\xi_{j}^{2}\right)^{b}\left(x \xi_{j}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x \xi_{j}\right)
$$

converges uniformly in $x \in I$ and $x^{2 \beta-1} \Delta_{\alpha, \beta}^{b} T$ is bounded on I. Hence,

$$
T \in O_{\alpha, \beta, \#}=\bigcup_{m \in \mathbb{Z}} O_{\alpha, \beta, m, \#}
$$

Moreover, by proceeding as in the proof of [1, Lemma 2.1] we can conclude that $T \in \bar{O}_{\alpha, \beta, \#}$. Assume now that $T \in \bar{O}_{\alpha, \beta, \#}$. Let $k \in \mathbb{N}$ and $\psi \in \mathcal{H}_{\alpha, \beta}$. According to [4, (2.1)] and by (3.3) we can write

$$
\begin{aligned}
& \left\langle x^{2 \beta-1}(x h)^{\alpha+\beta} J_{\alpha-\beta}(x h) \Delta_{\alpha, \beta}^{k} T(x), \phi(x)\right\rangle \\
& =\left\langle\Delta_{\alpha, \beta}^{k} T(x), h_{\alpha, \beta}\left(\tau_{h} h_{\alpha, \beta} \psi\right)(x)\right\rangle \\
& =\left\langle h_{\alpha, \beta}^{\prime} T\right\rangle(x),\left(-x^{2}\right)^{k} \tau_{h}\left(h_{\alpha, \beta} \psi\right)(x) \\
& =\sum_{j=1}^{\infty} a_{j}\left\langle\delta_{\alpha-\beta}, \tau_{\xi_{j}}\left(\left(-x^{2}\right)^{k} \tau_{h}\left(h_{\alpha, \beta} \psi\right)\right)\right\rangle \\
& =\sum_{j=1}^{\infty} a_{j}\left(-\xi_{j}^{2}\right)^{k} \tau_{\xi_{j}}\left(h_{\alpha, \beta} \psi\right)(h) \\
& \int_{0}^{\infty}(x h)^{\alpha+\beta} J_{\alpha-\beta}(x h)\left(\Delta_{\alpha, \beta}^{k} T\right)(x) x^{2 \beta-1} \psi(x) d x, \quad h \in I .
\end{aligned}
$$

Since $x^{2 \beta-1} \psi(x)\left(\Delta_{\alpha, \beta}^{k} T\right)(x)$ is absolutely integrable on I, the Riemann-Lebesgue lemma for the Hankel type transform [20, Section 14.41] leads to

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j}\left(-\xi_{j}^{2}\right)^{k} \tau_{\xi_{j}}\left(h_{\alpha, \beta} \psi\right)(h) \rightarrow 0, \text { as } h \rightarrow \infty \tag{3.4}
\end{equation*}
$$

We choose a function $\psi \in \mathcal{H}_{\alpha, \beta}$ such that $\psi \not \equiv 0, h_{\alpha, \beta}(\psi)(x)=0$ for every $x \geq 1$, and $h_{\alpha, \beta}(\psi) \geq 0$. It is simple to see that such a function ψ can be found.

Then if $x, y \in I$ and $x-y>1$, we have
$\tau_{x}\left(h_{\alpha, \beta} \psi\right)(y)=\int_{x-y}^{x+y}\left(h_{\alpha, \beta} \psi\right)(z) D_{\alpha, \beta}(x, y, z) d z$
$=\int_{1}^{\infty}\left(h_{\alpha, \beta} \psi\right)(z) D_{\alpha, \beta}(x, y, z) d z=0$.
Moreover, if $x \geq 1 / 2$ from (2.3) [20, section 13.45] it infers

$$
\tau_{x}\left(h_{\alpha, \beta} \psi\right)(x)=\int_{0}^{2 x}\left(h_{\alpha, \beta} \psi\right)(z) D_{\alpha, \beta}(x, x, z) d z
$$

$$
\begin{aligned}
& =\frac{x^{4 \beta}}{2^{\alpha-5 \beta} \Gamma(2 \alpha) \sqrt{\pi}} \int_{0}^{2 x} z^{-2 \beta}\left(4 x^{2}-z^{2}\right)^{-2 \beta}\left(h_{\alpha, \beta} \psi\right)(z) d z \\
& =\frac{1}{2^{\alpha-5 \beta} \Gamma(2 \alpha) \sqrt{\pi}} \int_{0}^{1} z^{-2 \beta}\left(4-\left(\frac{z}{x}\right)^{2}\right)^{-2 \beta}\left(h_{\alpha, \beta} \psi\right)(z) d z
\end{aligned}
$$

Hence

$$
\begin{equation*}
\tau_{x}\left(h_{\alpha, \beta} \psi\right)(x) \rightarrow \frac{2^{-(\alpha-\beta)}}{\Gamma(2 \alpha) \sqrt{\pi}} \int_{0}^{1} z^{-2 \beta}\left(h_{\alpha, \beta} \psi\right)(z) d z, \text { as } x \rightarrow \infty \tag{3.6}
\end{equation*}
$$

Note that

$$
\int_{0}^{1} z^{-2 \beta}\left(h_{\alpha, \beta} \psi\right)(z) d z \in I
$$

By virtue of (3.5), for every $l \in \mathbb{N}$,

$$
\sum_{j=1}^{\infty} a_{j}(-1)^{k} \xi_{j}^{2 k} \tau_{\xi_{j}}\left(h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)=a_{l}(-1)^{k} \xi_{l}^{2 k} \tau_{\xi_{l}}\left(h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)
$$

Therefore (3.4) and (3.6) imply that $a_{l} \xi_{l}^{2 k} \rightarrow 0$ as $l \rightarrow \infty$, and the proof is thus completed.
In the following we establish that $(H E)$ is necessary and sufficient in order that $S \in$ $\bar{O}_{\alpha, \beta, \#}^{\prime}$ be hypoelliptic in $\mathcal{H}_{\alpha, \beta}^{\prime}$.

Proposition 3.3: Let $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$. Then S is hypoelliptic in $\mathcal{H}_{\alpha, \beta}^{\prime}$ if and only if S satisfies (HE).
Proof: Assume firstly that S does not verify (HE). Then, for every $j \in \mathbb{N}$ there exists $\xi_{j} \in I$ for which

$$
\xi_{j}^{2 \beta-1}\left|h_{\alpha, \beta}^{\prime}(S)\left(\xi_{j}\right)\right| \leq \xi_{j}^{-j}
$$

and $\xi_{j}-\xi_{j-1}>1, j=2,3, \ldots$. and $\xi_{1}>1$.
We now consider $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ such that

$$
h_{\alpha, \beta}^{\prime}(u)=\sum_{j=1}^{\infty} \tau_{\xi_{j}} \delta_{\alpha-\beta} .
$$

According to Proposition 3.2, $u \notin \bar{O}_{\alpha, \beta, \#}$. Moreover, by invoking [12, Proposition 4.5]

$$
h_{\alpha, \beta}^{\prime}(u \# s)=x^{2 \beta-1} h_{\alpha, \beta}^{\prime}(u) h_{\alpha, \beta}^{\prime}(S)=\sum_{j=1}^{\infty} \xi_{j}^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)\left(\xi_{j}\right) \tau_{\xi_{j}} \delta_{\alpha-\beta}
$$

and Proposition 3.2 implies that $u \# s \in \bar{O}_{\alpha, \beta, \#}$. Hence S is not hypoelliptic in $\mathcal{H}_{\alpha, \beta}^{\prime}$. Suppose that S satisfies (HE), and let ψ be a smooth function defined on I such that

$$
\psi(x)= \begin{cases}x^{2 \alpha}, & \text { for } 0<x<C \\ 0, & \text { for } x \geq C+1\end{cases}
$$

where C is the positive constant that appears in property (HE).
Note that $\psi \in \mathcal{H}_{\alpha, \beta}$.
Also we define

$$
P(x)=\left\{\begin{array}{l}
0, \text { for } 0<x \leq C \\
x^{2 \alpha}-\phi(x) /\left(x^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(x),\right) \text { for } x>C .
\end{array}\right.
$$

According to [12, Proposition 4.2] , $x^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(x)$ is a multiplier of $\mathcal{H}_{\alpha, \beta}$. Hence as S satisfies (HE), P is smooth on I. Moreover, $x^{2 \beta-1} \mathrm{P}$ is a multiplier of $\mathcal{H}_{\alpha, \beta}$. In effect, according to [21] for every $k \in \mathbb{N}$ there exists an $n_{k} \in \mathbb{N}$ such that

$$
\left(1+x^{2}\right)^{-n k}\left(\frac{1}{x} D\right)^{k}\left[x^{2 \beta-1} h_{\alpha, \beta}^{\prime}(S)(x)\right]
$$

is bounded on I. Hence since S verifies (HE) by virtue of Theorem in [21], $x^{2 \beta-1} P$ is a multiplier of $\mathcal{H}_{\alpha, \beta}$.
We have that

$$
\begin{equation*}
x^{2 \beta-1} P(x) h_{\alpha, \beta}^{\prime}(S)(x)=x^{2 \alpha}-\phi(x), x \in I \tag{3.7}
\end{equation*}
$$

By applying the Hankel type transformation to (3.7), it obtains

$$
Q \# S=\delta_{\alpha-\beta}-g
$$

where $Q=h_{\alpha, \beta}^{\prime}(P) \in \bar{O}_{\alpha, \beta, \#}^{\prime},\left[12\right.$, proposition 4.2], and $\psi=h_{\alpha, \beta}(\psi) \in \mathcal{H}_{\alpha, \beta},[25$,

Lemma 8.

Suppose now that $u \# S=v$ where $u \in \mathcal{H}_{\alpha, \beta}^{\prime}$ and $v \in \bar{O}_{\alpha, \beta, \#}$.
Then, according [12, Proposition 4.7], we can write

$$
u=u \# \delta_{\alpha-\beta}=u \#(Q \# S)+u \# g=(u \# S) \# Q+u \# g=v \# Q+u \# g
$$

Proposition 3.1 implies that $v \# Q \in \bar{O}_{\alpha, \beta, \#}$ and [22] leads to $u \# g \in \bar{O}_{\alpha, \beta, \#}$. Thus the hypoellipticity of S is proved.

Thus proof is completed.
Remark 2: Note that by proceeding as in the proof of Proposition 3.3, we can also prove that if $S \in \bar{O}_{\alpha, \beta, \#}^{\prime}$ and there exist $Q \in \bar{O}_{\alpha, \beta, \#}^{\prime}$ and $R \in \mathcal{H}_{\alpha, \beta}$ such that
$Q \# S=\delta_{\alpha-\beta}-R$, then S is hypoelliptic in $\mathcal{H}_{\alpha, \beta}^{\prime}$.
In [24], we introduced for every $m \in Z$ the space $X_{\alpha, \beta, m \#}$ that is formed by all those complex valued and smooth functions ψ defined on I such that for every $k \in \mathbb{N}$,

$$
\lambda_{k}^{\alpha, \beta, m}(\psi)=\operatorname{Sup}_{x \in I}\left|e^{m x} e^{2 \beta-1} \Delta_{\alpha, \beta}^{k} \psi(x)\right|<\infty
$$

It is clear that $X_{\alpha, \beta, m+1, \#}$ is contained in $X_{\alpha, \beta, m, \#}$. By $\chi_{\alpha, \beta, m, \#}$, we denote the closure of $\chi_{\alpha, \beta}$ into $X_{\alpha, \beta, m, \#}$. The space

$$
\chi_{\alpha, \beta, \#}=\bigcup_{m \in I} \chi_{\alpha, \beta, m, \#}
$$

is endowed with the inductive topology.
Let $S \in \chi_{\alpha, \beta, \#}^{\prime}$. We say that S (or the Hankel type convolution equation $v \# S=v$) is hypoelliptic in $\chi_{\alpha, \beta}^{\prime}$ when $v \in \chi_{\alpha, \beta, \#}$ implies that any solution $u \in \chi_{\alpha, \beta}^{\prime}$ of $u \# S=v \in \chi_{\alpha, \beta, \#}$.

The following property is analogous to the one presented in Proposition 3.1.
Proposition 3.4: If $f \in \chi_{\alpha, \beta, \#}$ and $S \in \chi_{\alpha, \beta, \#}^{\prime}$, then $f \# S \in \chi_{\alpha, \beta, \#}$.
Proof: We can prove this result in a way similar to Proposition 3.1.
After establishing the following proposition (similar to Proposition 3.2) we will prove that (HE) is also a necessary condition for the hypoelliptic of S in $\chi_{\alpha, \beta}^{\prime}$.

Proposition 3.5: Let $(\alpha-\beta) \geq 1 / 2$. Assume that $\xi_{j}>2 \xi_{j-1}, j=2,3, \ldots$, and $\xi_{1}>1$. Let $\left(a_{j}\right)_{j=1}^{\infty}$ be a complex sequence such that $\left|a_{j}\right|=O\left(\xi_{j}^{\gamma}\right)$ as $j \rightarrow \infty$ for some $\gamma>0$. Then

$$
\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j} \delta_{\alpha-\beta}} \in \bar{O}_{\alpha, \beta}^{\prime}
$$

Moreover, if

$$
T=h_{\alpha, \beta}^{\prime}\left(\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j} \delta_{\alpha-\beta}}\right), \quad \text { then } T \in \chi_{\alpha, \beta, \#}
$$

if and only if

$$
\left|a_{j}\right|=O\left(\xi_{j}^{-v}\right) \text { as } j \rightarrow \infty, \text { for every } v \in \mathbb{N}
$$

Proof: Since $Q_{\alpha, \beta} \subset \mathcal{H}_{\alpha, \beta}$ [24] from Proposition 3.2, it is inferred that the series

$$
\sum_{j=1}^{\infty} a_{j} \tau_{\xi_{j} \delta_{\alpha-\beta}}
$$

converges in $\overline{O^{\prime}}$ when we consider in \bar{O}^{\prime} the weak* topology. Then, by [24]

$$
T=\sum_{j=1}^{\infty} a_{j}\left(x \xi_{j}\right)^{\alpha+\beta} J_{\alpha-\beta}\left(x \xi_{j}\right) \in \chi_{\alpha, \beta, \#}^{\prime}
$$

Moreover, if $\left|a_{j}\right|=O\left(\xi_{j}^{-v}\right)$, as $j \rightarrow \infty$, for each $v \in \mathbb{N}$, then it is easy to see that if $T \in$ $\chi_{\alpha, \beta, \#}$. Suppose now that $T \in \chi_{\alpha, \beta, \#}$. Let $k \in \mathbb{N}$ and $\psi \in \chi_{\alpha, \beta}$. We have
$\sum_{j=1}^{\infty} a_{j}\left(-\xi_{j}^{2}\right)^{k} \tau_{\xi_{j}}\left(h_{\alpha, \beta} \psi\right)(h)$
$=\int_{0}^{\infty}(x h)^{\alpha+\beta} J_{\alpha-\beta}(x h)\left(\Delta_{\alpha, \beta}^{k}\right)(x) x^{2 \beta-1} \psi(x) d x \rightarrow 0$,
as $h \rightarrow \infty$.
Define $\psi(x)=e^{-x^{2}} x^{2 \alpha}, x \in I$. According to (2.10) [7, Section 8.6],

$$
h_{\alpha, \beta}(\psi)(y)=\frac{y^{2 \alpha}}{2^{3 \alpha+\beta}} e^{-y^{2} / 4}, y \in I
$$

Hence, since $h_{\alpha, \beta}(\psi) \in \chi_{\alpha, \beta}, \psi \in \bar{O}_{\alpha, \beta}$ (See [24]). Note that $h_{\alpha, \beta}(\psi)(y) y^{2 \beta-1}>0$ for every $y \in I$.

Let $m \in \mathbb{N}$. We can write

$$
\begin{align*}
\tau_{x}\left(h_{\alpha, \beta} \psi\right)(y) & =\int_{|x-y|}^{x+y} D_{\alpha, \beta}(x, y, z) h_{\alpha, \beta}(\psi)(z) d z \tag{3.9}\\
& \leq M(x y)^{2 \alpha}\left(1+|x-y|^{2}\right)^{-m}, x, y \in I
\end{align*}
$$

Moreover, for each $x \in I$,

$$
\begin{aligned}
\tau_{x}\left(h_{\alpha, \beta} \psi\right)(x)= & \int_{0}^{2 x} D_{\alpha, \beta}(x, x, z) h_{\alpha, \beta}(\psi)(z) d z \\
& =\frac{x^{4 \beta}}{2^{\alpha-5 \beta} \Gamma(2 \alpha) \sqrt{\pi}} \int_{0}^{2 x} z^{-2 \beta}\left((2 x)^{2}-z^{2}\right)^{-2 \beta} h_{\alpha, \beta}(\psi)(z) d z \\
& =\frac{2^{-(\alpha-\beta)}}{\Gamma(2 \alpha) \sqrt{\pi}} \int_{0}^{2 x} z^{-2 \beta}\left(1-\left(\frac{z}{2 x}\right)^{2}\right)^{-2 \beta} h_{\alpha, \beta}(\psi)(z) d z
\end{aligned}
$$

Hence

$$
\begin{equation*}
\tau_{x}\left(h_{\alpha, \beta} \psi\right)(x) \rightarrow \frac{2^{-(\alpha-\beta)}}{\Gamma(2 \alpha) \sqrt{\pi}} \int_{0}^{\infty} z^{-2 \beta}\left(h_{\alpha, \beta} \psi\right)(z) d z \tag{3.10}
\end{equation*}
$$

Let l and $k \in \mathbb{N}$. From (3.9) we deduce that

$$
\begin{align*}
& \left|\sum_{j=1}^{\infty} a_{j}(-1)^{k} \xi_{j}^{2 k}\left(\tau_{\xi_{j}} h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)\right| \\
& \geq\left|a_{l}\right| \xi_{l}^{2 k}\left(\tau_{\xi_{j}} h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)-\sum_{\substack{j=1 \\
j \neq l}}\left|a_{j}\right| \xi_{j}^{2 k}\left(\tau_{\xi_{j}} h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right) \\
& \geq\left|a_{l}\right| \xi_{l}^{2 k}\left(\tau_{\xi_{j}} h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)-M \xi_{l}^{2 k} \sum_{\substack{j=1 \\
j \neq l}}\left|a_{j}\right| \xi_{j}^{2 k+2 \alpha}\left(1+\left|\xi_{j}-\xi_{l}\right|^{2}\right)^{-m} \\
& \geq\left|a_{l}\right| \xi_{l}^{2 k}\left(\tau_{\xi_{j}} h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)-M \xi_{l}^{2 k} \sum_{\substack{j=1 \\
j \neq l}}^{\infty}\left|a_{j}\right| \xi_{j}^{2 k+2 \alpha}\left|\xi_{j}-\xi_{l}\right|^{-m} \tag{3.11}
\end{align*}
$$

Since $\left|a_{l}\right|=O\left(\xi_{j}^{\gamma}\right)$, as $j \rightarrow \infty$ with $\gamma>0$, one has
$\sum_{\substack{j=1 \\ j \neq l}}^{\infty} a_{l} \xi_{j}^{2 k+2 \alpha}\left|\xi_{j}-\xi_{l}\right|^{-m} \leq M \underset{\substack{j=1 \\ j \neq l}}{\infty} \xi_{j}^{2 k+2 \alpha}\left|\xi_{j}-\xi_{l}\right|^{-m}$.
By taking into account that
$\xi_{j}-\xi_{j-1} \geq 2 \xi_{j-1}-\xi_{j-1} \geq 2^{j-1}, \quad j=2,3, \ldots \ldots$,
we can obtain
$\left|\xi_{j}-\xi_{l}\right| \geq 2^{l-1}$, for each $j \in \mathbb{N}-\{l\}$.
Hence, by choosing $m \in \mathbb{N}$ such that $m \geq 2(2 k+\gamma+4 \alpha+2 \beta)$, it follows
$\sum_{\substack{j=1 \\ j \neq l}}^{\infty} \xi_{j}^{2 k+\gamma+2 \alpha}\left|\xi_{j}-\xi_{l}\right|^{-m}$
$\leq \sum_{\substack{j=1 \\ j \neq l}}^{\infty}\left|\xi_{j}-\xi_{l}\right|^{-1}\left|1-\frac{\xi_{l}}{\xi_{j}}\right|^{-(2 k+\gamma+2 \alpha)}\left|\xi_{j}-\xi_{l}\right|^{-(2 k+\gamma+4 \alpha+2 \beta)}$

$$
\leq M 2^{-l}
$$

By combining (3.11), (3.12) and (3.13), we conclude that $\left|\sum_{\substack{j=1 \\ j \neq l}}^{\infty} a_{j}(-1)^{k} \xi_{j}^{2 k}\left(\tau_{\xi_{j}} h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)\right|$
$\geq \xi_{l}^{2 k}\left(\left|a_{l}\right| \xi_{l}^{2 k+2 \beta-1} \tau_{\xi_{l}}\left(h_{\alpha, \beta} \psi\right)\left(\xi_{l}\right)-M 2^{-l}\right) \rightarrow 0$, as $l \rightarrow \infty$.
Hence, from (3.8), (3.10) and (3.14), we deduce that
$\left|a_{l}\right| \xi_{l}^{2 k+2 \beta-1} \rightarrow 0$, as $l \rightarrow \infty$. Thus the result is established and hence proof is completed.
The following proposition can be proved as Proposition 3.3.
Proposition 3.6: Let $(\alpha-\beta) \geq 1 / 2$ and $S \in \chi_{\alpha, \beta, \#}^{\prime}$. If S is hypoelliptic in $\chi_{\alpha, \beta}^{\prime}$, then S satisfies the property (HE).

Remark 3: Finally we want to remark that, as in $\mathcal{H}_{\alpha, \beta}^{\prime}$, if $S \in \chi_{\alpha, \beta, \#}^{\prime}$ and there exist $Q \in$ $\chi_{\alpha, \beta, \#}^{\prime}$ and $R \in \chi_{\alpha, \beta}$ such that

$$
\begin{equation*}
Q \# S=\delta_{\alpha-\beta}-R \tag{3.15}
\end{equation*}
$$

then S is hypoelliptic in $\chi_{\alpha, \beta}^{\prime}$. However, we do not know how to define $Q \in \chi_{\alpha, \beta, \#}^{\prime}$ and $R \in$ $\chi_{\alpha, \beta}$ satisfying (3.15) when S verifies (HE). We think that the condition (HE) must be replaced by other analogous but stronger conditions than (HE) involving complex values.

References:

1. J.J. Betancor and B.J. Gonzalez, A convolution operation for a distributional Hankel transformation, Studia Math. 117(1995), 57-72.
2. J.J. Betancor and I. Marrero, The Hankel convolution and the Zemanian spaces β_{μ} and β_{μ}^{\prime}, Math. Nachr, 160(1993), 277-298.
3. J.J. Betancor and I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon, 38 (1993), 1141-1155.
4. J.J. Betancor and I. Marrero, Some properties of Hankel convolution operators, Canad, Math. Bull. 36(1993), 398-406.
5. F.M. Cholewinski, A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58 (1965).
6. J. Diendonne et. L, Schwartz, La dualite dans les espaces (\mathcal{F}) et $(\mathcal{L F})$, Ann. Inst. Fourier (Grenoble) 1 (1949), 61-101.
7. A. Erdelyi et. al., Tables of integral transforms, Vol. II, Mc Graw Hill, New York, 1954.
8. D.T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375.
9. I.I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/61), 307-336.
10. L. Hormander, On the range of convolution operators, Ann. of Math. (2) 76, (1962), 148-170.
11. E.L. Koh and A.H. Zemanian, The complex Hankel and I-transformations of
generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
12. I. Marrero and J.J. Betancor, Hankel convolution of generalized functions Rend. Mat. 15 (1995), 351-380.
13. D.H. Pahk, On the convolution equations in the space of distributions of L^{p}-growth, Proc. Amer. Math. Soc. 94(1985), 81-86.
14. D.H. Pahk, Hypoelliptic convolution equations in the space \mathcal{K}_{e}^{\prime}, Trans. Amer. Math. Soc. 298 (1986), 485-495.
15. D.H. Pahk and B.K. Sohn, Relation between solvability and a regularity of convolution operators in $\mathcal{K}_{p}^{\prime}, p>1$, J. Math. Anal. Appl. 185(1994), 207-214.
16. G. Sampson and Z. Zielezny, Hypoelliptic convolution equations in $\mathcal{K}_{p}^{\prime}, p>1$, Trans. Amer. Math. Soc. 223 (1976), 133-154.
17. S. Sznajder and Z. Zielezny, Solvability of convolution equations in \mathcal{K}_{1}^{\prime}, Proc. Amer. Math. Soc. 57(1976), 103-106.
18. S. Sznajder and Z. Zielezny, Solvability of convolution equations in \mathcal{K}_{p}^{\prime}, Pacific J. Math. 68 (1976), 539-544.
19. J. de Sousa Pinto, A generalized Hankel convolution, SIAM J. Math. Anal. 16 (1985), 1335-1346.
20. G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, 1956.
21. B.B. Waphare, Multipliers of Hankel type transformable generalized functions (communicated).
22. B.B. Waphare, On the topology of the space of Hankel type convolution operators (communicated).
23. B.B. Waphare, Characterization of convolution and multiplication operators on Hankel type transformable function and distribution spaces, International J. Physical, Chemical and Mathematical Sciences (Accepted) (2012).
24. B.B. Waphare, S.B. Gunjal, Hankel type transformation and convolution on spaces of distributions with exponential growth, International J. Mathematical Archieve (IJMA) - 2(1) Jan 2011, 130-144.
25. A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
A.H. Zemanian, The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math. 14 (1966), 678-690.
26. A.H. Zemanian, Generalized integral transformations, Interscience Publishers, New York, 1968.
27. Z. Zielezny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions (I), Studia Math, 28 (1967), 317-332.
28. Z. Zielezny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions (II), Studia Math-32 (1969) 47-59.

[^0]: * MIT ACSC, Alandi, Tal: Khed, Dist: Pune, Maharashtra, India

