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HANKEL TYPE CONVOLUTION EQUATIONS IN
DISTRIBUTION SPACE

B.B.Waphare®

Abstract:
In this paper we study Hankel type convolution equations in distribution spaces. Solvability
conditions for Hankel type convolution equations are obtained. We have also investigated

hypoelliptic Hankel-type convolution equations.
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1. Introduction: The Hankel type transformation is usually defined by
has ) 0 = [ GO Jog (0) 90 dt, x €1 = (0,0)
0

where J,_p denotes the Bessel type function of the first kind and order (a« — £). Throughout this
paper (@ — B) always will be greater than — % and will denote by I the real interval (0, ).

Following [25,26, and 27], we introduce the space H,p as the space of all those

complex valued and smooth functions ¢ defined on I such that, forany m ,k € N,

N
p{'ﬁ;ﬁ(qﬁ): Sup xm<; D) [x2F~1p(0)]| < 0.

x€(0,0)

The space H, is Frechet when it is endowed with the topology generated by the family
{ouht

automorphism of H, z. The Hankel type transformation is defined on }[O'Cﬁ,the dual space of

} il of seminorms. Following [25, Lemma 8], it can be easily established that h,, 4 is an
m,k e

Heqp , as the adjoint of the h, z — transformation of 7, z, and it is denoted by h;x.B' More
recently Waphare and Gunjal [24] have studied h,z on new spaces of functions and
distributions. Now we define the spaces x, g and Qg as follows:

A complex valued and smooth function ¢ defined on I is in x, g if and only if, for every

m,k € N,

k
M ($) = lim [e™ (}C D) (xzﬁ‘1 ¢(x)) ‘ <o,

Xap 1S €quipped with the topology associated to the system {77,07‘1[,’;} of seminorms. Thus
" /m,k EN

Xap 1S @ Frechet space.
The space Qp is constituted by all those complex valued functions @ satisfying the
following two conditions:
(i) s2=1 @ (s) is an even entire function, and
(ii) foreverym ,k € N

2R @) = Sup (1+[s])™ [s#10(s)| <.

|Ims|<k
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Qqp Is a Frechet space when we consider the topology generated by the family of seminorms

z

m,k

} oN Qgp -
m,k N

In [24] it is established that h, z is @ homeomorphism from y, g onto Q,z. Moreover, hg, g
coincides with its inverse. The Hankel type transform is defined on the dual spaces X&,/z and Q;xﬁ
as the adjoint of the h, ; transformation and it is also denoted by h;rﬁ .

The convolution for a Hankel type transformation closely connected with h, g was
investigated by Hirschman [9] and Haimo [8] and Cholewinski [5]. A simple manipulation in the
convolution considered by the above authors allows us to obtain the convolution for h, ; that
will denoted by # and is defined as follows: For every measurable function ¢ and iy on | such
that x2% ¢ and x2% ¢ are absolutely integrable on I, the convolution ¢ # 1 of ¢ and y is given

by
(@#P) () = f $() (e ) @Y dy, x €1,
0

where

(@) ) = [, Dop (6,y,2) P (2) dz, x,y €1 and

o0

Dyp (x,y,2) = f t2B= 2 (xt) B, g (xt) ()P Ju_p (1) (20)%FF J,_p (20) dt,
0

x,y,Z €1

The study of the # — convolution in distribution spaces was started by de Sousa-Pinto
[19]. In a series of papers, Betancor and Marrero [2,3,4,22,23] and [12] have investigated the
Hankel convolution on the Zemanian spaces. Also Betencor and Gonzalez [1] studied the
generalized Hankel convolution. Recently, Waphare and Gunjal [24] defined the # convolution
on distributions of exponential growth.

In this paper we analyze Hankel type convolution equations. Solvability conditions for

the # convolution equations in 7{0’1_3 and X;,g are investigated in Section 2. Also in Section 3 we
study hypoelliptic Hankel type convolution equations in :7-[0;5 and )(('x'ﬁ. Throughout this paper

M will always denote a suitable positive constant not necessarily the same in each occurrence.

2. Solvability of Hankel type convolution equations of distribution:
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In this section, inspired by the papers of Sznajder and Zietezny [17,18] and Pahk and Sohn [15],

we obtain necessary and sufficient conditions to solve Hankel type convolution equations in
J’{o;ﬁ and )(('w . Marrero and Betencor [12] studied the Hankel type convolution operators on
:7-[0;113. They introduced, for every m € Z, the space Oy pm4 constituted by all those complex
valued and smooth functions ¢ defined on | such that, for every k € N,

SEP™ (@) = Sup|(@ + x2)™ x2P A p(x)] < oo,

x€l

where A, g denotes the Bessel type operator x26~1D x*® D x?F~1

We define O, g m « as the closure of H, 5 in Oy g s -

Note that Oy gm# 2 Ogpme+1sforeachm € Z. The space

UmEZOa,ﬁ,m,# is denoted by Gaﬁ’#. The Hankel type convolution operators of }[o;ﬁ are the
elements of O, 4, the dual space of O, 4 [3]. Characterizations of O, z,, were obtained in
Proposition 4.2 [12]. Following [4], we can establish the following result:

Proposition 2.1: For S € (7;'3’# , the following conditions are equivalent

(i) Toevery k € N there correspond m,n € N and a positive constant M such that

¢
(o) [e#-1(hipS) ]| € €1, 1x 1l < (1+x2)—k}

ki {
> (1+x2)™", wheneverx €1, x > M.
(i) f T € Oyp4and SHT € Hyp, thenT € Hyp.
If S € 5;‘51#, the existence of solution for the convolution equation
u#S=v, (2.2)

foreveryv € }[0;'/3 ; Implies conditions (i) and (i) in Proposition 2.1.

’

Proposition 2.2: Let S € Ogpy fH, g #S = H

a

B then conditions

(i) and (ii) in Proposition 2.1 hold.

'

Proof: It is enough to see that (ii) holds when 7{0’(,;; #S = Hyp.
Note that the mapping

’

F:Hyp = Hyp=H

a‘B#S
u - u#tS

is the transpose of the mapping
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G:Hop > Hop CSHHyp
o - S#HP.
Then by involving [6, Corollary, p. 92] the mapping G is an isomorphism.
In particular, the mapping G™":S # H, 3 — Hy g is continuous.
Assume now that T € 5(;,3_# issuchthat T #S € H,p. Let (¢x)y=1 be asequence of smooth
functions such that the following three conditions are satisfied.
(i) c;,}g fOOOxZ“ ¢ (x) dx = 1, where c, g = 297 BT Ba + ),
()0 < ¢pp(x), x €1,
(i) pp(x) =0, x ¢ (1/(k+1), 1/k), foreveryk € N.
According to [3,p.1148], foreach ¢ € H, 3,
P #Y > P, ask >, inHyp. (2.2)
Moreover, by involving [12, Proposition 4.7], we can write
S# (T#Hepy) = (SHT) # ¢y = (THS)H# ¢ ,foreveryk € N .

Since T # ¢, € H,p, k € N, by taking into account that G *is continuous and by (2.2) and
(2.3), we conclude that (T#¢ )i, converges in H, z. Also by (2.2) again T # ¢, — T ,as
k — oo, in }[o;,ﬂ' When we consider in 7{6;,3 the weak* (or the strong) topology. Hence T €
Hg,p - Thus proof is completed.

Waphare and Gunjal [24] have defined the Hankel type convolution of distributions of
exponential growth. We introduced [24] a subspace y,, z 4 Of ¥,z consisting of S € x, 5 such
that S# € y, p foreveryy € y,p .

In the following we establish a condition that S € )((;,B_# satisfies when the equation (2.1)
admits a solution for every v € Xc’(,,[i’ .

Proposition 2.3: Let S € yg g4 If xop #5 = xop, then S verifies the following property.
T € Xqp Providedthat T € y,p,and T#S € yup.

Proof: This result can be proved in a similar way to Proposition 2.2. It is enough to see that if
(i) %=1 Is a sequence of smooth functions verifying the three conditions listed in the proof of

Proposition 2.2 then, forevery € x, 5,
Y#G = Y, ask oo, in yup, (2.4)
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By virtue of [24] and by the interchange formula [9, Theorem 2d] to show (2.4) it is equivalent to
see that, forevery ¥ € Qup,

s2P " hy p (Pr) ¥ — Yask - o, in Qg p. (2.5)
We now prove (2.5). Let (¢, )%=, be a sequence in the proof of Proposition 2.2 and Let ¥ €
Qqp - Since fgo t2* ¢y, (t) dt = cop, forevery k € N, where ¢, p = 2*7PI'(3a + B), we can

write

s hyp (i) (s)—1= j (st)~ @B, 5 (st) t2% ¢y () dt — 1
0

1/k
1
= f [(St)_(a_ﬁ)]a—ﬁ (st) = —| £ ¢y (D) it
1/(k+1) .p

foreveryk € Nands € C.
Let K be a compact subset of C, and let € > 0. There exists t, > 0 such that

|(s) @B, _p (s8) = 1/chp| < €,
foreach0 <t < t,ands € K. Hence we can find k, € N suchthateveryk > k,ands € K,
1/k
|27 hep (1) () — 1| < f |(st)™ @) Ju_p (58) — 1/Copt** 1 () dt
1/(k+1)

< Eca,ﬁ-

Moreover, from [11, Lemma 4], we deduce

|52 heyp (1) () = 1| < f ()™ Joop (st)| + 1) £2¢ ¢y (8) dt
0

< M elmsl ] t2% ¢, (t) dt
0
= Mel™sl foreveryk € Nands € C.
Hence, for each m € N there exists a a > 0 such that

1
1+|s|?

|s?$71 hyp(di) — 1| < €,forevery k > ko and [Ims| <m.
Further let m,n € N. We have, forevery¥ € Qqp,

Wom (P () [s%72 he g (1) (s) — 1])
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< llri;l'gm(l + |S|2)7‘L+1 szﬁ—l lP(S) |§71,r11£)| T |S|2 52/3—1 ha,ﬁ(¢k) (S) -1 ‘ -0,

as k — oo. Thus (2.5) is proved. Thus proof is completed.
We now give a condition for S € X;r,ﬁ,# that implies the solvability of equation (2.1) for every
V€ Xop-

Proposition 2.4: Let S € X;r,ﬁ,# . If there exist N, , C positive constants such that
-1’ C
Sups e ¢sj<r| (€ + 5)2F thep () (E+5s) 2 Qe § ER, (2.6)

then Xc,v.ﬁ #S = X;r,ﬁ .
Proof: By [6, Corollary, p.92], we see that x, ; = x,p #S, it is sufficient to prove that the
linear mapping
G:Xap 2> SH#Xap C Xap
Y - SHyY

is a homeomorphism.

Note firstly that G is continuous mapping. In effect, by invoking [24], we obtain
G @) = S#P = hop (S hyy (S) hap (), forevery Y € Yop. (27)
Since s2A-1 héx,ﬂ (8) is a continuous multiplier from Q, s into itself (see [24]) and from [24] it
infers that G is continuous.
Moreover from (2.7), we can deduce that G is one-to-one. Infact, if i € y, s being
G () = 0then s?~ h, 5 (S) hep () = 0. Since
S #0, hep (¥) =0 and hence y = 0. To complete the proof, we have to prove that the
mapping
G SH#Xap > Xap
S#HY - ¢
is continuous, or equivalently, by [24], we have to see that the mapping
F:s?72h, 5 (S) Qup = Qup
s h, (D -
is continuous. Let ® € Q,p and define ¥ = s2h-1 h;{ﬁ (5)D. Let k € N. By invoking lemma

of Hormander [10, Lemma 3.2], we obtain
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56720 (s)| < Sup |22 hp(S)(2) 226 (2)

|z—s|<4(k+T)

Sup |z?F1 h;_ﬁ O163]

% |z—s|<4(k+1) = s € C.
[ Sup |z2£-1 h;t/z (S)(Z)ll
|z—s|<k+r ’
Also, according to (2.6), one has
Sup [22P71 hyp (S)(2)| = Sup [(s+2)%7! hyp (S) (s + 2)|
|z—s|<k+T |z|<k+r
> Sup|(Res +2)?f~ hy 5 (S) (Res + 2)|
|z|<r
c
= TrlRes 29)
> 5 |[Ims| <k
=@+ e
Moreover by [24], there exists n € N such that
Sup 1+ 2|7 |22 hyp (s) (2)| < 0.
|Imz|<5k+4r '
Then
Sao b 2351 h;[; )@= Sup |[(s+2)? h('w (s) (s + t2)|
|z—s|<4(k+1) : |z|<4(k+T) i
<M Sup (1+|s+z»)"
|z—s|<4(k+71)
< M@+ |[s|)" |Ims| <k (2.10)

Hence from (2.8), (2.9) and (2.10), we conclude that
|s?2B~2 d(s)| <M (1 + |s|H)nH2N
X Sup|zj<atiern|@Z+ )P T¥(z +5)| , lIms| <k. (2.11)
Now letm € N. By (2.11) one has
Sup (1+[s|H™ s~ (s)|

|Ims|<k

<M Sup (1+|[s|H)™2N*™m Sup  |(z+ )1 ¥(z+5)]
|[Ims|<k |z|<4(k+7)

<M Sup . Sup (1+ |Z+S|2)n+2N+m |(Z+S)ZB_1‘P(Z+S)|
|[Ims|<k |z|<4(k+71)

<M Sup (1+]s|H)n2Nim 52671 y(s)].

|Ims| < 5k+4r

Thus we prove that F is continuous, and we conclude that G is a homeomorphism. Thus proof is

completed.
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3. Hypoelliptic Hankel type convolution equations:
Sampson and Zielezny [16], Zielezny [28] and [29] and Pahk [13] and [14], amongst others, have
investigated  hypoelliptic  (usual) convolution equations in  certain spaces of
generalized functions.
In this section we investigate hypoelliptic conditions for the Hankel type convolution
equations in }[ p and Xaﬁ
Let S € 0, g4 - We say that S (or the Hankel type convolution equation u#s = v) is
hypoelliptic in «,p IT all solutions u € c;_ﬁ of u#S =varein Ga,ﬁ,# whenever v € Ga,ﬁ.# :
Conversely v € Oa,ﬁ,# provided that the equation u#S = v admits a solutionu € Gaﬁl#.
Proposition 3.1: If f € OgpsandS € Ogpy, then f#S € Ogps.
Proof: A simple modification in the proof of [12, Proposition 4.2] allows us to see that, for every

m € N, there exist k = k(m) and continuous functions f, on I, 0 < p < k, such that

k
S= ZAZ,B f, ,and
p=0

(14 x2)™x?F=1 £ isboundedon |, 0 <p < k.
Claim1:1 € Z,andlet f € Ogpu4.1f S € Oyp, ,then

FH#S = ZA b (F#fy)

where (fp)lzj:o is a family of continuous functions on (0, o) such that

S = Xp-0lG 8 Jo (3.1)
and (1 + x*)™ x?f~1 £, is bounded on I, for every p = 0,1, ... ... ,k,and beingm > || + 3a +

B.
Proof of claim 1: Let ¢ € H, 5. By (3.1) we can write

) kK oo
(FHS, W)= (f; Stp = f f(x)Z [ 703 (e 2,09 )y ax
=00

- 2 f (8%5%) 00 f fo @) (@ ) () dy dx.
0

p=00
Sincem > |l| + 3a + B, it follows foreveryp = 0,1, ....., k,
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fflfp(Y)l |f (x)] fDa,B (x,v,2) |AZ’B,ZI,D(Z) dz dx dy
00 0

oo z+y
f f s O |A% 5, w2 f Do (6,,2) x2* x?~1 £ (x0)| dx dy dz
00 lz—y|

|/\
OR’S

M [ 150 |82, @] A+ G+ 9 Gy dady
0

o

<M f y2 1+ yHlU L) dy.j 2@ (1 + z%)M |Aaﬁ2¢(z)| dz < oo,
0 0
and the interchange in the order of integrations is justified.

Thus proof of claim 1 is completed.

Claim 2: Let I € z. If g is a continuous function on | such that (1 + x2)% x28=1 g(x) is
bounded on I, for some a > |I| + 3a + B,and f € Oy p 4 then f#g € Oypy .

Proof: Let b € N. Following [1, Lemma 3.1], we can see that the operators 7, and A, z

commute on O, p 4 for each x € 1, we can write

AL, (F#9) (x) = f 90 (88, f) G dy, x €L
0
For every x,y € I one has
x+y
|0 (82 5 ) 0] < f Dup (6, 2) |(A2 4 £) (2)] dz
[x—yl

<M (1+ (x + DM (xy)*®
<M (xy)?* (1 + x)U (1 + yH)lH,

Hence we obtain that

855 (#g) (0] < f 9O [(zebt s O] dy

<M x2* (1+x) Sup (1+22) 2271 |AL 5 f (2)]

zel

x [Cy21+y)U gl dy, x €1. (3.2)
Then f#g € 0, — [l], #.
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Moreover, f#g € Ogp_jy - In effect, if (P)ry € Hyp and P, = f, @ n—> oo in
Og,p,4 then from (3.2) we can infer that i, #g — f#g, asn — o in Oy p ;4 - Also according
to [22], there exists an s € Z such that ¢, #g € éa,ﬁ,s,# for every n € N. Hence as 5%3,# is
complete [22], f#g € Oyp4 .

Now, by taking into account that, for every yp € H,gand f € Gaﬁ_#,

oo

[ 760 8ap Wy dr = [ g £00 w60 i,
0

0

Thus from Claim 1 and Claim 2 we conclude that f# S € Ga,ﬁ,# .
Thus proof is completed.

We say that S € 5(’,(’,3’# has the property (HE) if and only if there exist B,C > 0 such
that |h;[’,g (S) ()| = y7B for every y =C. We now prove that the property (HE) is a
necessary and sufficient condition in order that S € Oéﬁl# is hypoelliptic in }[&.B'
The following result will allow us to prove the necessity of the condition (HE) .

Proposition 3.2: Assume that & > 1,&; —¢&;_; >1 for every j = 2,3, ..., and (aj);; ccC
such that |a;| = 0 (¢}), asj — oo, for some y > 0.
Denote by J,_p the element of 7—[0’(‘5 defined by
(8a-p, ) = Cap ’}Lr&xzﬂ_l Y(x), Y € Hep -,
beingc, z = 27 FT(3a + B).
Then

o)

Z aj Tg]. 6a—ﬁ € }[clr,ﬁ :

j=1
Moreover,if
T = hlp (52107, 6ap). then T € Oypyif and only if ;] = 0 (§¥) as j > oo, for
eachv € N.

Proof: The series

oo

Z aj Tfj 56{—B

j=1
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converges in H, , , when we consider in 7, , the weak* topology. In effect for every ¢ €
a,B a,p

Hypand & € [ according to [4, (2.1)], one has

(Tf 5a_5,1/1) = Cap xll%l+ x?P (Tf (]5) (x)

= Cap lim hp [P Jo g (x6) hep (H)(O] (©) (33)
= oY ().
Hence foreachn € N,
O a1y, Su gy = D a1 (§) ¥ € Hap,
j=1 =

and since |a;| = 0 (¢}) as j — oo, forsome y > 0, the last sequence converges as n — oo, for

everyy € H, p . Therefore

Moreover, from (3.3) we deduce that

Ty = () a7, 8apy hap )
j=1

(0]

= D ) e W) (&)

j=1
B
= (Zaj (&) Jacp (), W), W € Hyp.
j=1
Thus it is established that

T= z a (x6) " Jap (x)).
j=1

It is not hard to see that, if |a; | = 0 (|&;| ) asj — oo, for each v € N, then by involving well

known properties of the Bessel function [27, Sections 5.1, (6) and (7)] for every b € N the

series

BT = Y a5 (-6) (x6) oy (55,).
j=1
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converges uniformly in x € I and x28-1 AZ,B T is bounded on I. Hence,

T € Ogpy = U Oupmt -

MmeZ

Moreover, by proceeding as in the proof of [1, Lemma 2.1] we can conclude that T € Gaﬁ_# .
Assume now that T € Ga_ﬁ,#. Let k € Nandy € H,p. According to [4, (2.1)] and by (3.3)
we can write
(x?B71 (xh)**F Jo_p (xh) A% 5 T(x), $(x))
= (Alfzﬁ T(x), hap (Th hap P) (X))

= (hopT) (1), (=x*)* 14 (hap ) (x)

co

- Zaf (8a-p) T, ((_xz)krh(h“'ﬁ lp)))

=1

Z £2)" ¢, (hap ) (W

f h)™B Jup eh) (B, T) (@) Py () dx,  h €.
0

Since x?#* y(x) (A% 3 T) (x) is absolutely integrable on I, the Riemann-Lebesgue lemma for

the Hankel type transform [20, Section 14.41] leads to

5 k
Y52, a (—€7) g, (hapg ) (h) >0, ash - oo, (3.4)
We choose a function € H, g such that i Z 0,h,p () (x) =0 for every x =1, and
hep() = 0. Itis simple to see that such a function 1 can be found.

Thenifx,y € I 'and x —y > 1, we have

T (hap ) 0) = [ (hap ) (2) Dap (x,y,2) dz (3.5)

= f(h“'ﬁ 1/)) (2) Dyp (x,y,2)dz=0.

Moreover, if x > 1/2 from (2.3) [20, section 13.45] it infers

Ty (hap ) () = f (hap ) (2) Dag (x,%,2) dz
0
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2458 Ta)Vr j 272 (4x? =27 (hap ¥) (2) dz

2\ 2B
" 20758 F(Za)\/_ f _zﬁ (g) ) (hap ) () dz.

Hence

Tx(ha”g P) (x) - 1"2(_2(::)_ j)_ - 28 (g B V) (z)dz,asx > o (3.6)

Note that
1

J-Z_Zﬁ (hap ) (2) dz €1.

0

By virtue of (3.5), forevery! € N,

oo

D @ DR Ty (hap ) () = @ (“DF &8 1y, (has ¥) €D

j=1

Therefore (3.4) and (3.6) imply that a, §2¥ —» 0 as | — oo, and the proof is thus completed.

In the following we establish that (HE) is necessary and sufficient in order that S €

aﬁ «+ be hypoelliptic in I, B
Proposition 3.3: Let S € Oaﬁ'# . Then S is hypoelliptic in H, «p 1Fand only if S satisfies (HE).
Proof: Assume firstly that S does not verify (HE). Then, for every j € N there exists &; € [ for
which
&7 hes (9 (&)] <

and ¢ —¢&4 >1, j=23,.... and & > 1.

We now consider u € H, af such that

co

p (W) = ZT;}. Sa—p -

j=1

According to Proposition 3.2, u ¢ Gaﬁ# . Moreover, by invoking [12, Proposition 4.5]

Ry (us) = X207 iy p () hiyp 5) = Zfzﬁ " b () (8)) e, Bap
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and Proposition 3.2 implies that u#s € Ga,ﬁ,#. Hence S is not hypoelliptic in }[;,B. Suppose

that S satisfies (HE), and let 1 be a smooth function defined on I such that

_(x**, for 0<x<C
l'b(x)_{o, forx =C+1,

where C is the positive constant that appears in property (HE).
Note thaty € H,p .
Also we define
0, for0 <x <C
Pl = {xza — p(x) / (x%1 hep (S) (x), ) for x > C.
According to [12, Proposition 4.2] , x28-1 ha g (S) (x) is a multiplier of 3, g. Hence as S
satisfies (HE) , P is smooth on I. Moreover, x2#=1 P is a multiplier of Heq,p - In effect, according

to [21] for every k € N there exists an n,, € N such that
k

@+ (D) (i (5) (O]
is bounded on I. Hence since S verifies (HE) by virtue of Theorem in [21], x?f~'P is a
multiplier of 5 .
We have that
xB=1 P (x) hop (S)(x) = x** —¢p(x), x €L (3.7)
By applying the Hankel type transformation to (3.7), it obtains
Q#S=16,p—9
where Q = hy 5 (P) € Ogpy , [12, proposition 4.2], and = hyp (Y) € Hyp,[25,
Lemma 8.
Suppose now that u#S = vwhereu € H,zandv € Gaﬁ,# .
Then, according [12, Proposition 4.7], we can write
u=u#0,_p =u# (Q#S) + u#g = (UH#S) # Q + u#g = v#Q + u#yg.
Proposition 3.1 implies that v#Q € O,p4 and [22] leads to u#g € Oypy. Thus the
hypoellipticity of S is proved.
Thus proof is completed.
Remark 2: Note that by proceeding as in the proof of Proposition 3.3, we can also prove that if

S € 0,p4andthereexist Q € Oz, and R € H, g such that
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Q #S = 8,_p — R , then S is hypoelliptic in H, 4.
In [24], we introduced for every m € Z the space X, gm« that is formed by all those complex
valued and smooth functions 1 defined on I such that for every k € N,

AZ‘ﬁ'm W) = Su[;|emx e 1AL s p(x)| < 0.
X €
It is clear that X, g 41,4 IS cONtained in Xy g 4 - BY Xo p.m# » We denote the closure of y, 5 into
Xe,p,m# - The space

Xa,ﬁ,# = U Xa,/?,m,#

mel

is endowed with the inductive topology.
Let S € x,p4 - We say that S (or the Hankel type convolution equation v#S = v) is
hypoelliptic in x,, s When v € x, g4 implies that any solution u € y, ; Of u#S = v € yqp4.
The following property is analogous to the one presented in Proposition 3.1.
Proposition 3.4: If f € ygpusandS € xopu,then f #S € xap4-

Proof: We can prove this result in a way similar to Proposition 3.1.
After establishing the following proposition (similar to Proposition 3.2) we will prove

that (HE) is also a necessary condition for the hypoelliptic of S in X&.B'
Proposition 3.5: Let (a — f) = 1/2.Assumethaté; >2¢&;_,, j=23,....,and & > 1. Let

(aj);;be a complex sequence such that |a;| = 0 (¢}) as j - oo for some y > 0. Then

Z aj Tg]. 60[_3 € O‘Ixﬁ .
1
Moreover, if
T = h’(lx,ﬁ Z aj Tfj Sa-p p then T € Xa,[?,#
j=1
if and only if

ail=0(&")asj » oo, foreveryv € N .
la;| = 0 (&)

Proof: Since Qu,p € H,p [24] from Proposition 3.2, it is inferred that the series

o)

z aj Tsj 6a—ﬁ

j=1
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converges in O’ when we consider in 0" the weak* topology. Then, by [24]
a+p ,
7= 4 x)" Jap (¥§) € ipa-
j=1

Moreover, if |a;| = 0 (§;V),asj —» oo, for each v € N, then it is easy to see that if T €

Xap - SuUppose nowthat T € y,p4. Letk € Nandy € y,p.We have

o)

ASHARACTING

j=1
= [ (xh)%* B Jo_g (xh) (AL g) () x?A~1 4h(x) dx -0, (3.8)
ash - oo,

Define (x) = e™** x2%, x € I. According to (2.10) [7, Section 8.6],

yZa .
hepg(W) () = >3aif eV /*, yel.
Hence, since hy g (W) € Xap, ¥ € Ogp (See [24]). Note that hy g () (v) y2F~1 > 0 for
everyy € I.

Letm € N.We can write

Ty (hap ¥) ) = f| Dop (x,y,2) hop () (2) dz (3.9)
<M@y)?**A+|x—y|>)™, x,y €1.

x+y
x=y|

Moreover, foreach x € I,

2x

2y (e ¥) () = f Dag (%, %,2) hyp () (2) dz

0

2x
» x*P —28 2 _ . 2\-28
- aa T Oj 272 ((20% = 22) o s () (2) dz

2-(@-p) 7 7 2\ ~28
=——— [z (1-(52) ) hap @) (@) dz.
r2a) Vr J ( 2x )
Hence
Ty (hap ) (x) - Fz(;a) 5; 727 (hep ) (2) dz. (3.10)

Letland k € N.From (3.9) we deduce that
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> 4 (1 * (1, hap ¥) €
j=1
> lail 62 (e, hap 9) €0 = ) lag] €2 (g hap ) €0

o
> lagl 6% (vg,hap ) (60 = M2 Y |ag] 242 (14 [g; - &[*)

o
> oyl &2 (ve hap ) (6) — M &7 Slay| €267 g — & (3.11)
J#l

Since |a)| = 0 (¢}), as j — cowithy > 0, one has

oo -m 0 -m
ijl a; & 2k+2a If] | =M Zj=1 szk”a |St] = | (3.12)
j#l j#l
By taking into account that
&, — &, A S | =23, -
we can obtain
|€; —&| = 2171, foreachj € N —{I}.
Hence, by choosing m € N suchthatm > 2(2k +y + 4a + 2p), it follows
oo k -m
Sz & g g
Jj#l
—(2k+y+2a)
I =il — Qk+y+4a+2pB)
= Z5l6 ol 1 & - &l (3.13)
j#l 1
<M2

By combining (3.11), (3.12) and (3.13), we conclude that

TP a; (1% €2 (1ghap ) (a)‘

Jj#l
2 (layl €742 g, (hap ) (&) — M27H) = 0,a5 1 > o0, (3.14)
Hence, from (3.8), (3.10) and (3.14), we deduce that
|a;| 52'”23 1 5 0,as 1 — oo, Thus the result is established and hence proof is completed.

The following proposition can be proved as Proposition 3.3.

Proposition 3.6: Let (¢ — ) = 1/2 and S € )(aﬁ# If S is hypoelliptic in )(aﬁ, then S
satisfies the property (HE).
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Remark 3: Finally we want to remark that, as in 3, 5, if S € x, g4 and there exist Q €
Xaps and R € xqp such that

Q#S= 6, 5—R, (3.15)
then S is hypoelliptic in y, ;. However, we do not know how to define Q € x,z4+ and R €
Xa,p Satisfying (3.15) when S verifies (HE). We think that the condition (HE) must be replaced

by other analogous but stronger conditions than (HE) involving complex values.
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